Rapid Identification of Candidate Genes for Seed Weight Using the SLAF-Seq Method in Brassica napus
نویسندگان
چکیده
Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7-9. According to the 1000-seed weight (TSW) data, the individual DNA of the heaviest 46 lines and the lightest 47 lines were respectively selected to establish two bulked DNA pools. A new high-throughput sequencing technology, Specific Locus Amplified Fragment Sequencing (SLAF-seq), was used to identify candidate genes of TSW in association analysis combined with bulked segregant analysis (BSA). A total of 1,933 high quality polymorphic SLAF markers were developed and 4 associated markers of TSW were procured. A hot region of ~0.58 Mb at nucleotides 25,401,885-25,985,931 on ChrA09 containing 91 candidate genes was identified as tightly associated with the TSW trait. From annotation information, four genes (GSBRNA2T00037136001, GSBRNA2T00037157001, GSBRNA2T00037129001 and GSBRNA2T00069389001) might be interesting candidate genes that are highly related to seed weight.
منابع مشابه
RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight
Brassica napus is an important oilseed crop worldwide. Although seed weight is the main determinant of seed yield, few studies have focused on the molecular mechanisms that regulate seed weight in B. napus. In this study, the immature seeds of G-42 and 7-9, two B. napus doubled haploid (DH) lines with extremely different thousand-seed weight (TSW), were selected for a transcriptome analysis to ...
متن کاملGenome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus
Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth...
متن کاملAssociative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus
Breeding new varieties with low seed glucosinolate (GS) concentrations has long been a prime target in Brassica napus. In this study, a novel association mapping methodology termed 'associative transcriptomics' (AT) was applied to a panel of 101 B. napus lines to define genetic regions and also candidate genes controlling total seed GS contents. Over 100,000 informative single-nucleotide polymo...
متن کاملIdentification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.
Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) arra...
متن کاملGenome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus
Yield is one of the most important yet complex crop traits. To improve our understanding of the genetic basis of yield establishment, and to identify candidate genes responsible for yield improvement in Brassica napus, we performed genome-wide association studies (GWAS) for seven yield-determining traits [main inflorescence pod number (MIPN), branch pod number (BPN), pod number per plant (PNP),...
متن کامل